Subcubic triangle-free graphs have fractional chromatic number at most 14/5
نویسندگان
چکیده
منابع مشابه
Subcubic triangle-free graphs have fractional chromatic number at most 14/5
We prove that every subcubic triangle-free graph has fractional chromatic number at most 14/5, thus confirming a conjecture of Heckman and Thomas [A new proof of the independence ratio of triangle-free cubic graphs. Discrete Math. 233 (2001), 233–237].
متن کاملThe fractional chromatic number of triangle-free subcubic graphs
Heckman and Thomas conjectured that the fractional chromatic number of any triangle-free subcubic graph is at most 14/5. Improving on estimates of Hatami and Zhu and of Lu and Peng, we prove that the fractional chromatic number of any triangle-free subcubic graph is at most 32/11 ≈ 2.909.
متن کاملBipartite density of triangle-free subcubic graphs
A graph is subcubic if its maximum degree is at most 3. The bipartite density of a graph G is defined as b(G) = max{|E(B)|/|E(G)| : B is a bipartite subgraph of G}. It was conjectured by Bondy and Locke that if G is a triangle-free subcubic graph, then b(G) ≥ 45 and equality holds only if G is in a list of seven small graphs. The conjecture has been confirmed recently by Xu and Yu. This note gi...
متن کاملBipartite subgraphs of triangle-free subcubic graphs
Suppose G is a graph with n vertices and m edges. Let n′ be the maximum number of vertices in an induced bipartite subgraph of G and let m′ be the maximum number of edges in a spanning bipartite subgraph of G. Then b(G) = m′/m is called the bipartite density of G, and b∗(G) = n′/n is called the bipartite ratio of G. This paper proves that every 2connected triangle-free subcubic graph, apart fro...
متن کاملTriangle-free subgraphs with large fractional chromatic number
It is well known that for any k and g, there is a graph with chromatic number at least k and girth at least g. In 1970’s, Erdős and Hajnal conjectured that for any numbers k and g, there exists a number f(k, g), such that every graph with chromatic number at least f(k, g) contains a subgraph with chromatic number at least k and girth at least g. In 1978, Rödl proved the case for g = 4 and arbit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the London Mathematical Society
سال: 2014
ISSN: 0024-6107
DOI: 10.1112/jlms/jdt085